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ON THE IDENTIFICATION

OF
LINEAR AND NONLINEAR STRUCTURAL SYSTEMS

Objective: The development of computational techniques for
the identification of linear and nonlinear mechanical systems

subject to random excitation.

Summary: Computational procedures have been suggested to
determine the differential equation governing the motion of
linear and nonlinear structural systems subject to random
excitation when the system excitation and response are observed.
The objective of this effort is to yield the transfer functions,
impedances and damping coefficients of linear systems as well

as to determine the nonlinearities in the spring and damping
coefficients governing the motion of nonlinear structures.

In general the computational procedure employed for the
identification of the unknown structure consists of three stages.
The first is the generation of model reference hypotheses con-
cerning the number of degrees of freedom of the system. The
second stage is one of parameter estimation in which the assumed
model is fit to the observed data. The final stage consists

of a verification of the validity of the assumed model. It



therefore involves the statistical inference procedures of
hypotheses testing.

In the first quarterly progress report (1) a quasilineariza-
tion--least squares--recursive smoothing procedure to accomplish
the parameter estimation stage of the identification procedure
computations was described. Theoretically this procedure is
sufficiently general to accomplish the parameter estimation
for both linear and nonlinear systems and preliminary computa-
tion examples were illustrated. Difficulty in getting quasi-
linear computational solutions to converge to a correct solution
when the initial guess was excessively far from the correct
solution was experienced. This difficulty motivated examina-
tion of an alternate least squares identification procedure
that is simpler to implement but is only suitable for the
identification of linear systems subject to a zero mean random
excitation. The theory underlying the least squares identifica-
tion scheme for randomly excited linear systems was described
in the last quarterly progress report (2).

During the current quarterly interval, effort has continued
to be concentrated on the linear system identification procedures.
In the preceding report, (2), the identification of the
parameters of an unknown linear dynamical system was reduced
to the identification of the unknown parameters in a stochastic
difference equation or autoregressive scheme [Equation (25),

Section 3.2.2]. 1In this report, the theory leading to the

ii



autoregressive scheme representation of the unknown parameters
of the linear dynamical system is briefly reviewed as are the
statistical results on the estimation of the parameters and
the determination of the order of autoregressive schemes.

(The order, k, of the autoregressive model introduced is two
times the number of degrees of freedom of the original,
unknown continuous dynamic system.) A computational example
illustrates some of the material discussed on the autoregressive
scheme. It is anticipated that more extensive computational
experiments on linear system ldentification will be conducted
in the next quarterly interval and that the investigation

of procedures for the identification of nonlinear systems

will also be resumed.

iii



1. INTRODUCTION

The objective of the investigation is to develop a
computational procedure for the identification of mechanical
structures that are driven by a random excitation. In par-
ticular, the structures can be conceived of as an arbitrary
collection of lumped spring-mass=damper coefficients in the
linear case, or by a polynomial description of the nonlineari-
ties in the nonlinear case.

The approach employed for the identification of the
unknown structure consists of 3 stages. The first is the
generation of hypotheses concerning the number of degrees of
freedom of the system and the form of the nonlinearities.

In effect, this prescribes a conceptual and computational
model for the system. In the second stage, the observed
data, corresponding to the excitation and response of the
system, is used to determine parameters or coefficients of
the model assumed to represent the system. The final stage
consists of a verification of the validity of the assumed
computational model. This is to be accomplished by comparing
the response of the system model to the response of the
actual system. Subject to an "energy" response criterion,
the assumed model is either accepted or an alternative model
is assumed and computed on. In case of the latter alternative;

the procedure is iterated, starting once again with stage 1.




1.2

In the first quarterly progress report (1), a quasi-
linearization-least squares sequential estimation procedure,
suitable for the identification of both linear and nonlinear
systems was discussed and some computational examples were
given. The approach may be thought of as the identification
of an unknown system by comparison with a sequence of model
reference conjectures. The quasilinearization procedure is
suitable for deterministic (swept sine wave for example)
and random excitation driving forces.

In the second quarterly progress report (2), a least
squares procedure for the identification of linear time
invariant systems under zero mean random force excitation
and regularly spaced obser&ations was introduced. As a
consequence, the problem of identifying the parameters of an
unknown k/2 degree of freedom dynamical system was found to
be equivalent to the problem of estimating the unknown parameters

in a kth

order autoregressive scheme.

The asymptotic statistical properties of the autoregressive
parameter estimation procedure have been demonstrated to be
equivalent to the results in ordinary regression theory (Mann
and Wald 1943, Reference (3)) and have been extensively
studied and reported on since (4,5).

In this report we briefly review the mathematical basis

for our linear system identification procedure and also the

review of mathematical results associated with autoregressive



1.3

models (the estimation of the parameters and the determination
of the order of the autoregressive scheme).

The heuristic energy fit criterion suggested earlier to
determine the suitability of the model assumed to fit to the
unknown linear system is shown to be equivalent to the
residual variance/observed power, statistic used to determine
the order of an autoregressive scheme.

A preliminary example of a least squares fit to an auto-
regressive scheme is illustrated. It is anticipated that
more extensive computational experiments on linear system
identification will be conducted during the next quarterly

interval,



2. ANALYSIS

2.1 Objective

Our objective is to describe a computational procedure
which will permit identification of a continuous parametrically
described unknown stationary linear dynamic system excited by
white noise which is observed by a regular sampling process.

The situation is depicted in Figure 1.

Unknown |
Linear
Dynamic : y(t) -
System

x(t)

\

x(n) y(n)

FIGURE 1. The Identification Problem Considered

The unknown system is assumed to be represented by

the dynamic equations

A q(t) + b x(t) (1)

a(t)

y(t) c' q(t)



2.1.2

0o i 0 1l
! 0
A= | I ;b= | o] 5 oe= |.
T
o ! 0
I 1 0
TAk 1 Tk -2 i
In the matrix A, the parameters k,a .a are unknown

1°°° "7k
and in addition the time function x(t) 1is assumed to be a
sample function of a white noise process.

The system input x(t) and its response are regularly
sampled over a finite time observation interval (for the
purpose of digital computation) and consequently give rise
to the observed time sequences x(n), y(n); n=1,2,...m.

Our requirement is that we estimate the unknown system
parameters k,al,...ak from the finite duration time series

x(n) a y(n); n=1,2,...m. From this knowledge we may com-

pute the linear system transfer function, impedance, etc.



2.2.1

2.2 Qutline of the Procedure

The regularly sampled system (2.1.1) can be expressed

as the discrete time system
g(n+l) = F q(n) + f w(n); (1)
y(n) = c¢' q(n)

where the kxk matrix F and the kxl1l c¢olumn vector f are
functions of the unknown system parameters k,al,...ak and
w(n) 1is a white noise sequence. 1In the preceding progress

report it was demonstrated that in general
F = exp (TA) (2)

where T 1is the sampling interval and f 1is in general a

more complicated function of the parameters 8y,-.-8 It

kt
should be noted that the representation in (2) is an equivalent
of ( 21.1) from the point of view of the identification
problem in the sense that it exposes the system parameters

sufficiently to permit them to be estimated¥

*This equivalence is distinctively different from that achieved
in the more usual discrete representation of continuous linear
systems. The latter problem is well discussed by Blackman (6),
the former problem is not known to have been treated in the
literature. The distinction between our representation and the
more usual one is a consequence of the fact that the usual time
discrete representation of a continuous time system or process
is an approximation and the discrete time series may be of
arbitrary order depending upon the guality of the approximation.
The choice of our representation (1) is motivated by several
results in the identification of sampled data systems, (R.C.K.
Lee (7)) and the fact that the white noise signal source can

be employed.




2.2.2

The equivalence of (1) and (2.1.1) is reviewed in
Section (2.3).

In Section (2.4) it is demonstrated that the system (1)

can be put into the form

y(n)

e -
n e

-ay y(n-i) +

8 (n~1i); (3)
1 i 1°

i 1

n=1,2,...m

Equation (3) is in the form of a mixed autoregressive-
moving average model, (Hannan [4]). The parameters {ai}
and {61} are functions of the unknown system parameters

{ai}. We replace the second series in (3) by an equivalent

autocorrelated series, n{(n), where

u(n) =

[ It

8, w(n-1) (4

i=1

and are left with the kth order autoregressive model

y(n) —ay y(n-1i) - oy y(n-k) + n(n); (5)

n = 1, <+ 5 m.

The unknown coefficients @yse e Oy in the autoregressive
model are estimated by a least squares procedure and are

subsequently transformed to the unknown system parameters

Byseedy.



2.2.3

The following is a list of the analytic steps employed
in the procedure and the corresponding sections in which they
are discussed.

(1) The equivalent continuous time and discrete time
models (2.3).

(ii) The transformation between the discrete time model
and the autoregressive model (2.4).

(ii1) The transformation between the {ai} and the {ai} (5).

(iv) The estimation of k,a
model (2.6).

1oy from the autoregressive

Items (11) and (iv) follow respectively from adaptions
from the work of R. C. K. Lee (7) and E. J. Hannan (4).
Items (1) and (iii) are not known to have explicitly appeared
before.

In addition, the digital computer programs written to
accomplish the estimation of the coefflcients and some numerical

results in the autoregressive model are discussed in Section (2.7).



2.3.1

2.3 The Equivalent Time Continuous and Time Discrete Models

The regularly sampled versions of the continuous time
system signals x(t) and y(t) (2.1.1) give rise to the dis-
crete time series x(n) and y(n) from which we wish to
estimate the unknown continuous system parameters. The
discrete versions of the input-output relationships of a
linear time invariant system can be thought of either as a
discrete time-time invariant system of equivalently as a
mixed model moving average-autoregressive model. If our
parametricized representation of the unknown continuous time
system were represented as an autoregressive model we could
employ the techniques of regression analysis to estimate the
unknown coefficients in the autoregressive model and sub-
sequently transform these back to the continuous system
parameters. Hence we are motivated to seek an autoregressive
model equivalent of the continuous time system. For simplicity,
let's arbitrarily consider one which is the same order as the
number of state variables 1in the original unknown dynamic
system. (The variable k, corresponding to k/2 d.odf.
system.) Since the estimation of parameters in the auto-
regressive model is a consequence of the structure of the
covariance properties of the "system response', we examine
the covariance properties of the k state time continuous

and k state time discrete models.



2.3.2

Consider the state variable representation of a linear
dynamical system in the form (2.1.1)

q(t)

L}

A q(t) + b x(t);

c' q(t). (1)

y(t)

Qur interest is in the covariance stationary properties
of y(t) hence we consider the stationary or steady state

solution

t
q(t) f (=14 piha

f M px(t-a) dr. (2)

e}

Since E x(t) = 0; E qg(t) =0 and consequently the covariance
matrix associated with the state variable q(t) is

0 [ '
E q(t) g'(t-t) = E f J M bx(t-1) x(t-t-u)b'e*? drdy
o‘o0 ’

[+ <) o0 “ 1
- f J My s(ttp-2)b' e*? drau
(o]

(3)




2.3.3

where

[
|
Moo= I e"A bpre! au (1)
o)

and M is positive definite. Correspondingly, the covariance

of y(t) 1is

E y(t)y(t-1)

n
e}
0]
=
o

(5)

which can be evaluated for any matrix A.

Now consider the kth order discrete time dynamic system

q(n+l)

F q(n) + £ x(n);
(6)

y(n) d' q(n)
where F, f and & are respectively kxk, kxl and kx1

matrices and x(n), n=0,1,2... 1is a zero mean independent

gaussian distributed sequence with variance 02 (a discrete

version of x(t) ).

To determine the covariance E y(n)y(m), first con-

sider the solution q(n). From (6)

q(n+2)

F q(n+l) + £ x(n+l)
(7

F2 q(n) + Ff x(n) + £ x(n+l)

q(ntm) = F" g(n) + Fm_lf x(n) + Fm—zf x(n+l)+-.-fx(n+m-1)

m-1
= F" q(n) + I pr-1-Ke x(n+k)

k=0



2.3.4

Considering only the steady state part of the solution

we have that

m-1

E q(n+l) q'(ntm) = E fx(n) I x(n+k)f'(Fm_1_k)'
k=0
(8)
m-1 1
= ¢ 1 Ex(n)x(n+tk)f' (F 1K)
k=0
Since E x(n) = 0; E x(n)x(n+k) = 0 for k # O.

E q(n+l)q'(n+m) = ££t (F )t = (F%°1) e (9)

In (9) we used the symmetry property of the covariance
matrix and the fact that the matrix ff' is also symmetric.
Therefore

E y(n)y(n+m) = 4' (FMfe' 4 (10)

If we identify

F = expTA; mT =1
d = ¢ (11)
£f£fY = M

the covariance of the time discrete model (10) is identical

at the lag points mT = t, m = 0,1,... to the covariance of

the time continuous model, and this holds for arbitrary T.
Now M can be explicitly determined for any A and

from M we could determine ff'.



2.3.5

We know that the time discrete state variable
model (6) can be put into the autoregressive form (see

Section 2.4)

y(n) =
i

N~
[ acl-y

-ai y(n‘i) +

B, x(n-1) (12)
1 i

1

where the a, are only functions of the parameters in F.

Also we can write (12) in the form

y(n) =

k
I -a; y(n-1) +n(n) (13)

i=1

where u(n) 1s an autocorrelated series derived from the

moving average component in (13).

u(n) = I B8, x(n-1i) (14)
i

=1

We can employ a least squares parameter estimate to determine

the o, (see Section 2.6). Consequently we conclude that

from the point of view of the estimation of the unknown

coefficients in the linear dynamic system in (1) we can employ

the model

q(n+1) F q(n) + £ x(n)

(15)

y(n) ¢ q(n)

where F = exp TA, and f 1is an unknown kxl1 column vector.



2.4.1

2.4 The Transformation Between the Discrete Time and the

Autoregressive Model

In this section we demonstrate that the discrete time

dynamic system

q(n+l) = F q(n) + £ x(n)
(1)
y(n) = c¢' q(n)
where F,f and d are respectively kxk, kx1 and kxl
matrices and x(n), n = 0,1,... 1is a zero mean independent

gaussian distributed sequence, can be written in the form of
a mixed autoregressive-moving average model
k k

y(n) = I -ay y(n-i) + By x(n-1i) (2)
i=1 i=1

Under the nonsingular transformation

(3)

s = B q;
where -
cl
B =]|c'F (4)

it can be shown by direct substitution, that (1) is transformed

into the canonical form (see Quarterly Progress Report #2,

Appendix, for details of this demonstration).



2.4.2

s(ntl) = ¢ s(n) + d x(n) (5)
y(n) = ¢' s(n)
where — B — -
0 | N 1 s4(n)
¢ = C I ; c= 0 ; s(n)= . (6)
o :
—9-L.- _ ; sk(n)
Okl T%k-1 TN

and 4 is some nxl column vector.
That the canonical form (5) can be represented in the

form (2) can also be demonstrated by direct substitution.

From (%)

sj(n+l) = Sj+l(n) + dj x(n) j = 1,2,...k-1 (7)
and

: (n) (n) (8)

s, (n+l) = I -a . s.(n) + b, x(n).

K soq ktl-i B4 k
We observe that from (5)

y(n) = q;(n) (9)

Therefore we solve (7) for sj(n) in terms of sl(n+J—l) and

obtain

j-1

s,(n) = s.(n+j-1) - ; d, x(k-(j-1)-1); j=2,---k (10)
J 1 g=1 %



2.4.3

Substituting (10) and (9) into (8) yields

k n
y(n+k) = I -o, y(ntk-i) + I
i=1 i=1
k~1 j-1
- I o, I b, x(k+(j-1)-1)
j=1 9 i=1

In vector matrix form we have

y(n+k) = [y(k) - y(k+tn-1)] [-o
-;l
+ [x(k)-- - x(k+n-1)] B
B1
where the vector 8 = [Bn, -Bl]' may be seen to be
_ - —_ -
By 1 0 d{j
. - -
= ] 1 10 d2
(!2 al 1 0
B .
1
— L_‘“n-l ! Lén

di x(n+k-1)

(11)

(12)

(13)



2.4.4

Consequently we have achieved our objective of writing (1)
in the form (2).
More simply we can write (2) in the form
k

y(n) = 1§ -aqa.

I 5 y(n-i) + n(n) (14)

where the sequenc u(n) 1is a correlated sequence.

Alternatively (14) and (1) can be put into the form

s(n+l) = ¢ s(n) + b n(n)
(15)
y(n) = <¢' s(n)
where ¢ and c¢' are as defined in (6) and
0
b = |. (16)



2.5.1

2.5 On the Transformation Between the Autoregressive and the

{ Continuous Time Models.

OQur concern here is with the transformation between

the coefficients {ai} in the canonical form, discrete time

representation
s(ntl) = ¢ s(n) + b n(n)
(1)
y(n) = c¢' s(n)

where the matrices ¢,b and ¢ are as defined in Section 2.4

and the equivalent continuous time representation

A q(t) + b x(t)

a(t)
(2)
c' q(t)

y(t)

where the canonical form matrix A, and the vector b and

¢ are as defined in Section 2.

The representation in (1) is derived from the repre-

sentation
q(n+l) = F q(n) + £ x(n)
(3)
y(n) = ¢' q(n)
where
F = exp TA
(4)
1

¢ = BFB~



2.5.2

Lemma 1% There exists a nonsingular transformation, T,

such that
A = TeT 1 (5)
where . —_
A 0
A = . (6)
0 Ak

That is, A 1s a diagonal matrix consisting of the roots of
the characteristic polynomial of ¢. (All of the roots

are assumed to be distinct.)

AT A

Lemma 2. The characteristic polynomial for ¢ 1is

g(a) = A"+ alxn'l + ce0 + g (7

Consequently once the {ai} are known the elements Ay of

the matrix can be determined from (7).

Lemma 3. The nonsingular diagonal matrix A 1is similar to

the matrix C 1in the sense

A o= e° (8)

¥Well-known mathematical results will be identified as lemmas
and quoted without proof. A sufficient reference for the
results employed in this section is Chapter (3), Coddington
and Levenson (8).
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— — -
where log A " 7
1 0 1 0
C = L] = . 3
0 ) 0 ) (9)
log )\k My
L — (. -
Lemma 4. For every matrix C and every matrix P
We equate
PCP™L = TaA (11)

which is motivated by (4), and use the identification in
(9), the definition of (A) and lemmas (1) and (2) to get the

characteristic poiynomial

k
h(a) = u 4+ Tal un—l + ««- Ta_ = 1 (u-ui) (12)

for the matrix TA. Since the roots My i=1,2+°*k are known

from (9), the parameters {ai} are determined directly from (12).

To summarize: The parameters aj;, -+ g are obtained

in the following manner.

(1) Estimate «o a

1 k

(2) Form the characteristic polynomial

fa(k) = A+ alk + .. o

using the autoregressive scheme.

(13)



(3)

()

Determine the roots Al, e Ak of fa(A) (the

eigenvalues of the time discrete system (1)).

Then the characteristic polynomial for the time
discrete system (2) revealing the continuous system
perameters a1, oAy is given by

r (u) = (u-log 1y)

(14)
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2.6 Estimation in the Autoregressive Model

In the preceding section it was demonstrated that hte
identification of the unknown parameters of a k/2 d.o.f. linear
dynamical system excited by white noise could be associated
with the estimation of the unknown parameters of an autoregressive
scheme of order k. In this section we review the theory
associated with the estimation of the parameters of the white

noise residual autoregressive scheme

oy y(t=1i) + e(t); t = ktl, --'m (1)

K
y(t) = I

1
where e(t), t =0 + 1--- 1is a zero mean independent, identically
distributed gaussian sequence with variance 02. The system

is assumed to be observed over the finite duration interval speci-

fied by t = k+1,...m.

For t = k+1,...m (1) can be written as

(YD) [y @ - v [y e (k)]

= . + (2)

y(m)

.« y(m-1) %7 e(m)

— o’ e —

which is recognized to be in the least square parameter estima-

tion form (see Quarterly Progress Report #2). In matrix form

(2) is
Y = S 'a + e (3)



2.6.2

where
Ty (k+1) Ty(1) ... y(k)
Im ~ . > Sm' = >
y(m) y(m-1)
-ak_l Ce(k)]
L S (4)
oy e(m)

The normal equations for the estimate, &m, of the

unknown parameter vector o (after m observations of y(t) ) is

Sy = 83S8"'a (5)

It is instructive to examine (5) in component form. This is

given by

_-y(l) y(2) -+ y(m-k) ] —y(k+l)—_
y (k) ee. y(m=1) y(m)

_ S -
y(1) y(2) --- y(m-k) y(1) -+ y(k)
. . &

m

. (6)
y (k) ... y(m-1) LEl(m—k) «.ry(m-1) "



2.6.3

Or — — — —
Ro Ry,o Ro,n Ro,k-1 .
z - m
) R0 Rij1
®
A~ ~ ) ~
Ry 1 Ree1,0 - 0 - 0 0 Recr k-
where R . m-k-1
R, s = moecT b y(i+r) y(i+s) (7)
i=1
Pl
and Rr is the estimator of the covariance R(r-s) =

3

E{Y(t-r)Y(t-s)} of the stationary process {Y(t), t = 0, + 1, }.
Following Hannan (4) and Anderson (9), the estimators can

be seen to be asymptotically unbiased and normally distributed

with covariance matrix

- - -1
A N R ... R _
Cov a,a = (Cov ai,aj) = ok2 ?’O 0,k-1
(8)
Rg-1,0 "+ Br-1,x-1
where 8k2 is the estimated residual variance given by
g 2 = F 9 . -— . o -— - o
and where
ﬁ(p) = R, . for any J. (10)

Jd>Jtp
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It is interesting and useful to observe that by multi-

plying (1) by y(t) and taking expectations we obtain

R(0) = aln(l) + azR(Z) + e akR(k) + Rey(O) (11)

Since the random variable e(t) is assumed to be independent

of the random variables e(t-1), e(t-2),--- it is certainly
independent of y(t-1, y(t-2),::+. Therefore in (11) we can
substitute
_ _ 2
Rey(O) = Ree(O) = 0 e (12)

where °2e is the average "power" of the input process,

{e(t), t=0, + 1,--+}. Since it is known (l4) that the sample
covariance matrix in (8) converges in probabilié& to the true
covariance matrix, for m large the residual variance (9)

i1s an explanation of the extent to which the hypothesized model
accounts for the observed power, ﬁ(O), where R(0) = Ey(t) y(t)
Consequently as k 1increases, the residual variance approaches

2

the constant o ce? the input power.

Returning our attention to equations (1) - (8), for a
given data set and m sufficlently large, one could determine
a confidence region for the estimates &i. Rather than pursue
this point extensively, we note that the diagonal terms of the
matrix in (8) designate the variance of the estimate of the corres-

ponding estimate oy When the square root of each of these
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terms 1s significantly smaller than the estimate of ays the
true value of ay will well be in a region corresponding to
any reasonable confidence coefficient.

In conjunction with the large sample procedure suggested
To estimate the autoregressive coefficients, we wish to explore
procedures to determine, k, the order of the hypothesized
autoregressive model. Several alternatives are available for
this purpose. One heuristic approach is to compute the residual
variance statistic (9) for successive values of k.

That 1s, a simple practical hypothesis test is to compute
the correlation matrilx and the estimates @y for as high an
order k of regressive scheme that we are willing to consider.
The estimate of k 1s sufficient if for no greater value of
k 1s the residual variance, sz, significantly decreased.
Observe that this heuristic approach is an implicit application

of the inspection scheme earlier. That is, the estimate of

k suggested is the largest number k for which

-~ ~

|&k| >>  Cov a,, a. (13)

There are a number of more formal alternatives available
to test the order of the autoregressive model. Closely related

is the test statistic
2

A= 2__%13 (14)

b

(o]
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which is used to distinguish between the hypotheses
; k = p+q (15)

and

Whittle (10) and Anderson (9) have demonstrated that the related
quantity wz* is distributed, xé , 1.e., chi-squared with

q degrees of freedom, under the hypothesis HO’ where

¥ = D metera)) v X2 (16)

Similarly, hypothesis tests based on a statistic other
than (14) (using partial and multiple correlation coefficients
as well as spectral estimates) have been analyzed to determine
the order of an autoregressive scheme. At this point the
references by Hannan, Whittle, and Anderson (4), (5), (6),(10)

provide sufficient reference and a bibliography for this topic.

¥The test statistic w2 is in the same form as the energy fit
criterion suggestion in (2). It is in the form

w2 = sz/ﬁ(o), where 3k2 and R(0) are defined in (7),

(9) ana (10).



2.7.1

2.7 An Example

As a test of our computation programs and as an illustra-
tion of some of the material in this section we have considered

the Kendall (11) autoregressive scheme
y(t) = 1.1 y(t-1) - 0.5 y(t=2) + n(t) (1)

A series of 100 gaussian independent unit variance samples was
generated to correspond to the quantity n(t) in (1). The

recursive relationship in (1) was used to generate the sequence

{y(t)}. From the {y(t)} we compute the appropriate correla-

tion function estimates and the corresponding normal equations

appear in the form

Equivalently we can write

Ry,2 Ro,o  Bonn —a,
_ (3)
Ry Rio R —o

m-2 ] m-2 m-2 17
z y(i)y(2+1) y(i)y(i) r y(i)y(1i+1)
i=1 i=1 i=1
m-2 m-2 m-2
z y(i+l)y(2+1) r y(i)y(1+i) I y(i+1l)y(i+1)
i=1 3 | =1 1=1 i

(2)



2.7.2

Corresponding to the tabulated computer results in the pages

immediately following, the solution of (2) gives the results

a True o Estimated
1.100 0.9898 (4)
-0.500 -0.4720

with the normalized covariance (correlation coefficient) matrix,

- -
R, 1.000  0.675
~ 1
p === = (5)
Ro,0 0.675  1.005

A~

Additional computations for this example for larger values

of m and for k=1 as well as for higher order systems are in

progress.
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